1,261 research outputs found

    Mapping Fusion and Synchronized Hyperedge Replacement into Logic Programming

    Full text link
    In this paper we compare three different formalisms that can be used in the area of models for distributed, concurrent and mobile systems. In particular we analyze the relationships between a process calculus, the Fusion Calculus, graph transformations in the Synchronized Hyperedge Replacement with Hoare synchronization (HSHR) approach and logic programming. We present a translation from Fusion Calculus into HSHR (whereas Fusion Calculus uses Milner synchronization) and prove a correspondence between the reduction semantics of Fusion Calculus and HSHR transitions. We also present a mapping from HSHR into a transactional version of logic programming and prove that there is a full correspondence between the two formalisms. The resulting mapping from Fusion Calculus to logic programming is interesting since it shows the tight analogies between the two formalisms, in particular for handling name generation and mobility. The intermediate step in terms of HSHR is convenient since graph transformations allow for multiple, remote synchronizations, as required by Fusion Calculus semantics.Comment: 44 pages, 8 figures, to appear in a special issue of Theory and Practice of Logic Programming, minor revisio

    Dynamic Programming on Nominal Graphs

    Get PDF
    Many optimization problems can be naturally represented as (hyper) graphs, where vertices correspond to variables and edges to tasks, whose cost depends on the values of the adjacent variables. Capitalizing on the structure of the graph, suitable dynamic programming strategies can select certain orders of evaluation of the variables which guarantee to reach both an optimal solution and a minimal size of the tables computed in the optimization process. In this paper we introduce a simple algebraic specification with parallel composition and restriction whose terms up to structural axioms are the graphs mentioned above. In addition, free (unrestricted) vertices are labelled with variables, and the specification includes operations of name permutation with finite support. We show a correspondence between the well-known tree decompositions of graphs and our terms. If an axiom of scope extension is dropped, several (hierarchical) terms actually correspond to the same graph. A suitable graphical structure can be found, corresponding to every hierarchical term. Evaluating such a graphical structure in some target algebra yields a dynamic programming strategy. If the target algebra satisfies the scope extension axiom, then the result does not depend on the particular structure, but only on the original graph. We apply our approach to the parking optimization problem developed in the ASCENS e-mobility case study, in collaboration with Volkswagen. Dynamic programming evaluations are particularly interesting for autonomic systems, where actual behavior often consists of propagating local knowledge to obtain global knowledge and getting it back for local decisions.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    A coalgebraic semantics for causality in Petri nets

    Get PDF
    In this paper we revisit some pioneering efforts to equip Petri nets with compact operational models for expressing causality. The models we propose have a bisimilarity relation and a minimal representative for each equivalence class, and they can be fully explained as coalgebras on a presheaf category on an index category of partial orders. First, we provide a set-theoretic model in the form of a a causal case graph, that is a labeled transition system where states and transitions represent markings and firings of the net, respectively, and are equipped with causal information. Most importantly, each state has a poset representing causal dependencies among past events. Our first result shows the correspondence with behavior structure semantics as proposed by Trakhtenbrot and Rabinovich. Causal case graphs may be infinitely-branching and have infinitely many states, but we show how they can be refined to get an equivalent finitely-branching model. In it, states are equipped with symmetries, which are essential for the existence of a minimal, often finite-state, model. The next step is constructing a coalgebraic model. We exploit the fact that events can be represented as names, and event generation as name generation. Thus we can apply the Fiore-Turi framework: we model causal relations as a suitable category of posets with action labels, and generation of new events with causal dependencies as an endofunctor on this category. Then we define a well-behaved category of coalgebras. Our coalgebraic model is still infinite-state, but we exploit the equivalence between coalgebras over a class of presheaves and History Dependent automata to derive a compact representation, which is equivalent to our set-theoretical compact model. Remarkably, state reduction is automatically performed along the equivalence.Comment: Accepted by Journal of Logical and Algebraic Methods in Programmin

    L'officina di Luciano di Samosata: Nuove prospettive critiche

    Get PDF
    Sin resume

    Constraint Design Rewriting

    Get PDF
    We propose an algebraic approach to the design and transformation of constraint networks, inspired by Architectural Design Rewriting. The approach can be understood as (i) an extension of ADR with constraints, and (ii) an application of ADR to the design of reconfigurable constraint networks. The main idea is to consider classes of constraint networks as algebras whose operators are used to denote constraint networks with terms. Constraint network transformations such as constraint propagations are specified with rewrite rules exploiting the network’s structure provided by terms

    Separable graphs, planar graphs and web grammars

    Get PDF
    This paper is concerned with the class of “web grammars,≓ introduced by Pfaltz and Rosenfeld, whose languages are sets of labelled graphs. A slightly modified definition of web grammar is given, in which the rewriting rules can have an applicability condition, and it is proved that, in general, this extension does not increase the generative power of the grammar. This extension is useful, however, for otherwise it is not possible to incorporate negative contextual conditions into the rules, since the context of a given vertex can be unbounded. A number of web grammars are presented which define interesting classes of graphs, including unseparable graphs, unseparable planar graphs and planar graphs. All the grammars in this paper use “normal embeddings≓ in which the connections between the web that is written and the host web are conserved, so that any rewriting rule affects the web only locally

    Architectural design rewriting as an architecture description language

    Get PDF
    Architectural Design Rewriting (ADR) is a declarative rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation of graph-based structures and the use of conditional rewrite rules. These features enable the modelling of, e.g. hierarchical design, inductively defined reconfigurations and ordinary computation. Here, we promote ADR as an Architectural Description Language
    corecore